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Background on Surfaces in R”

Definition

Let U C R? be an open set, a regular parametrized surfaces is a map:
f:U—R"

whose derivative at every point exists and has maximal rank (immersion).
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Definition

Let > be a regular parametrized surface f : U — R", define the area of ¥:

Am = ffoa= f], o

dudv

8u1 au2




Background on Surfaces in R”

Principal curvatures ki, kp, Gaussian curvature K = ki kp, and mean
curvature H = #
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Let bU(N) = <m7 N>, g’J = <an7 aiuj>’ 1] = 172,
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Isothermal parametrization

Definition
Let U C R?, f: U — R" be a regular parametrized surface.
f(ur, up) = (x1(u1, u2), ..., xn(u1, u2)).

If the parameters uy, up satisfy:
f f
0, _8 ,—a =0
8U1 8u2

Then they are called isothermal parameters.
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Let A(u) =




Isothermal parametrization

Definition
Let U C R?, f: U — R" be a regular parametrized surface.
f(ur, up) = (x1(u1, u2), ..., xn(u1, u2)).

If the parameters uy, up satisfy:

O
8U1

or
6U2

of of
O, <8_U]_’ 8_L12> =0

Then they are called isothermal parameters.

f f
Let A(u) = 6871 8872
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Minimal Surfaces

Definition

A surface ¥ C R3 is a minimal surface if and only if it is a critical point of
the area functional for all compactly supported variations.
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Definition

A surface ¥ C R3 is a minimal surface if and only if it is a critical point of
the area functional for all compactly supported variations.

A (0) = —//z 2hHdA




Minimal Surfaces Examples

f(u,v) = (cosh(u) cos(v), cosh(u)sin(v), u)
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Surfaces Examples

f(u,v) = (sinh(u)sin(v), — sinh(u) cos(v), —v)
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Minimal Surfaces Examples

f(u,v) = (u—sin(u) cosh(v), 1 — cos(u) cosh(v),4sin(g)sinh(g))
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Weierstrass-Enneper Representation

Definition (Weierstrass-Enneper Representation)

Let D be a domain in the complex plane, g(z) an arbitrary meromorphic
function in D and f(z) an analytic function in D having the property that
fg? is an analytic function in D. Let

p1=f(1—g%), g2 = if(1+g°), p3=2fg

Every nonplanar minimal surface defined over a simply connected domain
can be represented in the form:

¢
xj(¢) =Re {/0 (pj(z)dz} +¢, =123




Weierstrass-Enneper Representation

Step 1:
Let f:R2 =R, z=u+iv,Z=u—iv, we have u = Z5Z v = Z-Z. By
chain rule:

of _1(of of\ of 1[of 0f
9z 2\ou 'ov) 9z 2\ou oy



Weierstrass-Enneper Representation

Step 1:
Let f:R2 >R, z=u+iv,Z=u—iv, we have u = 212 v = ZZ By

chain rule:
of _1(of ofN of 1 (of .0f
9z 2\au 'ov) 9z 2\ou " 'ov

If f(u,v) = a(u,v)+ ib(u,v), then the Cauchy-Riemann equations are
satisfied if and only if:

OF _1((9a 0bY, (93 0b)\ _,
0z 2 ou Ov I@v ou N




Weierstrass-Enneper Representation

Step 2:

Let > be a minimal surface with isothermal parametrization

x(u,v) = (x*(u, v), x*(u, v), x3(u, v)).

Let z = u + iv, we obtain x(z,z) = (x(z, 2), x*(z, Z), x3(z, Z)), and let
Ox ox
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Weierstrass-Enneper Representation

Step 2:

Let > be a minimal surface with isothermal parametrization

x(u,v) = (x*(u, v), x*(u, v), x3(u, v)).

Let z = u + iv, we obtain x(z,z) = (x(z, 2), x*(z, Z), x3(z, Z)), and let
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Weierstrass-Enneper Representation

Step 3:

. . 1 . .
= —(x}, — ix})(du + idv) + E(X{J + ix})(du — idv)
= x),du + X} dv

= 2 Re(ypjdz)



Weierstrass-Enneper Representation

Step 3:

u

. . 1 . .
= —(x}, — ix})(du + idv) + E(X{J + ix})(du — idv)

= x),du + X} dv
= 2 Re(ypjdz)

xi(u,v) = 2Re {/r goj(z)dz} +q



Weierstrass-Enneper Representation

Step 4:
Let f = @1 — itp2, 8 = p3/(p1 — ip2), we have:

(=62 = (- ig) (1- 2

=1 — Y2+ 1+ 2
. 2 . . ©3
11+ = i = o) (14 22
Y1 — 1p2
= ip1+ w2 —i(p1+ip2)
2fg = 23



Weierstrass-Enneper Representation Examples

@ Helicoid: .

f(2) = 5z 8(2) = ¢
o Catenoid: 1

f = — = z

(2) = 50 8(2) =
@ Enneper:

f(z)=1, g(z) =z

e Catalan:

__2ﬂnh0—%)

f(2) =1- e, g(z) = 0



My Research Project

Regularity theory of boundary of plateau problem
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