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1 Introduction

This report is written during the 2024 UBC Summer Reading Program, guided
by Emanuele Bodon, who is a postdoctoral fellow at UBC.

The proof of the main result is based on [KCD], and for general facts on the
p-adic numbers, we refer to [GOU].
The Taylor expansion of (1 + z)/"

142!/ = i <1£n>xk7

k=0

is given by

where for any a € R,
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Observe that when n = 2,
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and when n = 3,

and when n = 6,
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It seems it’s always possible to write (12”) in a fraction whose denominator is a

power of n.

2 Purpose

In this report, we will show that for every positive integer n and non-negative
integer k, (12") can always be written as a/n® for some a € Z and some b € Z >,
or equivalently, every prime factor of the denominator of the rational number
(%") is a prime factor of n.



3 Background

For a fixed prime number p, We will use Q, for the p-adic numbers for some
prime number p. This section includes some results we will use later in the
proof.

Since @, is a metric space, we can talk about continuous functions from @Q, to
some other metric space.

Definition 3.1 (Continuous function). Suppose X and Y are metric spaces,
U C X, a function f : U — Y is said to be continuous at a € U if for every
€ > 0 there exists a § > 0 (possibly depending on a) such that, for every z € U,

dx(z,a) <0 = dy(f(x), f(a)) <e.

If f is continuous at every a € U, then f is said to be continuous on U.

We will denote by |- |, the p-adic absolute value normalized by |p|, = %, and
by |- |g the usual absolute value on R.

Example 3.1. The constant function f(x) = ¢ for some fixed ¢ € Q, is con-
tinuous on Q,, since at each point a € Q,, for every ¢ > 0, |f(z) — f(a)|, =
|c — ¢|p, = 0 < € always holds.

Example 3.2. The identity function f(x) = z is continuous on Q,, since at
each point a € Q,, for every ¢ > 0, choosing § = ¢ gives |z —al, < d = |[z—a, <

e=|f(z) — fla)]p, <e.
Example 3.3. Sum of continuous functions on Q,, is continuous. Take two
continuous functions f,g: U — Q, where U is a subset of Q,. By continuity of
f, g, at each point a € U, for all € > 0, there exist d7,d, > 0 such that

|z —alp, < df = |f(z) — fla)|p <e,

|z —alp, < dy = |g(z) — fla)], <e.

Pick § = min{dy, d,} and by strong triangle inequality, we get

[z —alp <6 =[(f(x) +g(x)) = (f(a) + g(a))lp
< max{[f(z) — f(a)lp, [9(x) — g(a)l,} <e.

Therefore the sum of continuous functions on Q,, is continuous.

Example 3.4. Product of continuous functions on Q, is continuous. Take two
continuous functions f,g: U — Q, where U is a subset of Q,. By continuity of
f, g, at each point a € U, for all € > 0, we have

3

[z —aly <37 = 1) = J@ly <



and

|z —al, <& = |g(z) —gla)], <e
= lg(2)lp < l9(z) — g(a)lp + |9(a)l, < e+ |g(a)lp.

If f(a) =0, then

|z — al, <min{d’, ¢} = |f(x)g(x) — f(a)g(a)lp

< max{| f(@)g(x) ~ F(@)g(@) | (@)g(x) - f(a)g(a)],}
= 9@, - |£(@) = f(a)l,
< e+ o) oo

=E£.

Now if f(a) # 0, then there exists §, such that
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|z —al, <3y = [g(z) — g(a)], < m-

Therefore, if |z — al, < min{d’, §,d,},

[f(@)g(x) = fla)g(a)lp, < max{|f(z)g(z) — f(a)g(z)lp, |f(a)g(z) — f(a)g(a)
= max{|g(z)|p - |f(x) — ( )ps [f(a)lp - 19(x) = g(a)|

}

o}
»}

< max{(e + [g(a)|,) y [ f(a)

£ | _c
+|9( o P1f(a)l,

=e.
Therefore the product of continuous functions on Q, is continuous.

Example 3.5 (Continuity of polynomial functions). Combining the previous
four examples, we can conclude that all polynomial function on @, is contin-
uous, and in particular, the functions = (Z) for a non-negative integer k is
continuous in Q.

Example 3.6 (Continuity of absolute value). The absolute value function
|-1: Q=R

is continuous. Indeed, for every at every point a € Qp, € > 0, choosing § = ¢
gives
|z —alp<d=e= |\x|p— |a|p{]R <e

by the reversed triangle inequality.
Therefore the absolute value functions is continuous.



4 Proof

Fix a positive integer n; for each non-negative integer k, let the rational number

(1]/6”) be written in reduced form §. Let p be a prime number such that p { n;

we want to show that p t b. We will later see how this is enough to prove our
result.

Consider ||, in Q,, we have that |n|, = 1 since p { n, therefore we have
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That is,

1
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Since every element in Z, is a limit of an integer Cauchy sequence (Z,, is the
completion of Z with respect to the p-adic absolute value), we can find a sequence

of integers (x;) such that
1

lim z; = —.
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Now since the function x +— (i) is a polynomial which is continuous, we have
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Since each ; is an integer, (') is an integer, and |(%)

the absolute value, we get
lim i i

‘a‘ | (1/n

blp k

If p | b, then since § is in reduced form, we must have p { a, and therefore
|4, > 1, a contradiction. This shows p { b.

Now let p1,p2, ..., p; be the prime divisors of n, the above argument shows that

(%") can be written as
1/n\ a
k _pflpgz...pf“

» < 1. By continuity of

<1
P

= lim
P

p

where a € Z, e1, ..., e € Z>o.
Suitably multiplying some p1, pe, ..., p; on the numerator and denominator, we
get

()2

for some o’ € Z and e € Z>o. This completes the proof.
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