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1 Introduction

This report is written during the 2024 UBC Summer Reading Program, guided
by Emanuele Bodon, who is a postdoctoral fellow at UBC.
The proof of the main result is based on [KCD], and for general facts on the
p-adic numbers, we refer to [GOU].
The Taylor expansion of (1 + x)1/n is given by

(1 + x)1/n =

∞∑
k=0

(
1/n

k

)
xk,

where for any a ∈ R, (
a

k

)
=

a · (a− 1) · · · · · (a− k + 1)

k!
.

Observe that when n = 2,

(1 + x)1/2 = 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

64
x4 + . . .

= 1 +
1

2
x− 1

23
x2 +

1

24
x3 − 5

26
x4 + . . .

and when n = 3,

(1 + x)1/3 = 1 +
1

3
x− 1

9
x2 +

5

81
x3 − 10

243
x4 + . . .

= 1 +
1

3
x− 1

32
x2 +

5

34
x3 − 10

35
x4 + . . .

and when n = 6,

(1 + x)1/6 = 1 +
1

6
x− 5

72
x2 +

55

1296
x3 − 935

31104
+ . . .

= 1 +
1

6
x− 15

63
x2 +

55

64
x3 − 8415

67
x4 + . . .

It seems it’s always possible to write
(
1/n
k

)
in a fraction whose denominator is a

power of n.

2 Purpose

In this report, we will show that for every positive integer n and non-negative
integer k,

(
1/n
k

)
can always be written as a/nb for some a ∈ Z and some b ∈ Z≥0,

or equivalently, every prime factor of the denominator of the rational number(
1/n
k

)
is a prime factor of n.
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3 Background

For a fixed prime number p, We will use Qp for the p-adic numbers for some
prime number p. This section includes some results we will use later in the
proof.
Since Qp is a metric space, we can talk about continuous functions from Qp to
some other metric space.

Definition 3.1 (Continuous function). Suppose X and Y are metric spaces,
U ⊆ X, a function f : U → Y is said to be continuous at a ∈ U if for every
ε > 0 there exists a δ > 0 (possibly depending on a) such that, for every x ∈ U ,

dX(x, a) < δ ⇒ dY (f(x), f(a)) < ε.

If f is continuous at every a ∈ U , then f is said to be continuous on U .

We will denote by | · |p the p-adic absolute value normalized by |p|p = 1
p , and

by | · |R the usual absolute value on R.

Example 3.1. The constant function f(x) = c for some fixed c ∈ Qp is con-
tinuous on Qp, since at each point a ∈ Qp, for every ε > 0, |f(x) − f(a)|p =
|c− c|p = 0 < ε always holds.

Example 3.2. The identity function f(x) = x is continuous on Qp, since at
each point a ∈ Qp, for every ε > 0, choosing δ = ε gives |x−a|p < δ ⇒ |x−a|p <
ε ⇒ |f(x)− f(a)|p < ε.

Example 3.3. Sum of continuous functions on Qp is continuous. Take two
continuous functions f, g : U → Qp where U is a subset of Qp. By continuity of
f, g, at each point a ∈ U , for all ε > 0, there exist δf , δg > 0 such that

|x− a|p < δf ⇒ |f(x)− f(a)|p < ε,

|x− a|p < δg ⇒ |g(x)− f(a)|p < ε.

Pick δ = min{δf , δg} and by strong triangle inequality, we get

|x− a|p < δ ⇒|(f(x) + g(x))− (f(a) + g(a))|p
≤ max{|f(x)− f(a)|p, |g(x)− g(a)|p} < ε.

Therefore the sum of continuous functions on Qp is continuous.

Example 3.4. Product of continuous functions on Qp is continuous. Take two
continuous functions f, g : U → Qp where U is a subset of Qp. By continuity of
f, g, at each point a ∈ U , for all ε > 0, we have

|x− a|p < δf ⇒ |f(x)− f(a)|p <
ε

ε+ |g(a)|p
.

3



and

|x− a|p < δ′ ⇒ |g(x)− g(a)|p < ε

⇒ |g(x)|p ≤ |g(x)− g(a)|p + |g(a)|p < ε+ |g(a)|p.

If f(a) = 0, then

|x− a|p < min{δ′, δf} ⇒ |f(x)g(x)− f(a)g(a)|p
≤ max{|f(x)g(x)− f(a)g(x)|p, |f(a)g(x)− f(a)g(a)|p}
= |g(x)|p · |f(x)− f(a)|p

≤ (ε+ |g(a)|p)
ε

ε+ |g(a)|p
= ε.

Now if f(a) ̸= 0, then there exists δg such that

|x− a|p < δg ⇒ |g(x)− g(a)|p <
ε

|f(a)|p
.

Therefore, if |x− a|p < min{δ′, δf , δg},

|f(x)g(x)− f(a)g(a)|p ≤ max{|f(x)g(x)− f(a)g(x)|p, |f(a)g(x)− f(a)g(a)|p}
= max{|g(x)|p · |f(x)− f(a)|p, |f(a)|p · |g(x)− g(a)|p}

< max{(ε+ |g(a)|p)
ε

ε+ |g(a)|p
, |f(a)|p

ε

|f(a)|p
}

= ε.

Therefore the product of continuous functions on Qp is continuous.

Example 3.5 (Continuity of polynomial functions). Combining the previous
four examples, we can conclude that all polynomial function on Qp is contin-
uous, and in particular, the functions x 7→

(
x
k

)
for a non-negative integer k is

continuous in Qp.

Example 3.6 (Continuity of absolute value). The absolute value function

| · | : Qp → R

is continuous. Indeed, for every at every point a ∈ Qp, ε > 0, choosing δ = ε
gives

|x− a|p < δ = ε ⇒
∣∣|x|p − |a|p

∣∣
R < ε

by the reversed triangle inequality.
Therefore the absolute value functions is continuous.
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4 Proof

Fix a positive integer n; for each non-negative integer k, let the rational number(
1/n
k

)
be written in reduced form a

b . Let p be a prime number such that p ∤ n;
we want to show that p ∤ b. We will later see how this is enough to prove our
result.
Consider | 1n |p in Qp, we have that |n|p = 1 since p ∤ n, therefore we have∣∣∣∣ 1n

∣∣∣∣
p

= 1.

That is,
1

n
∈ Zp.

Since every element in Zp is a limit of an integer Cauchy sequence (Zp is the
completion of Z with respect to the p-adic absolute value), we can find a sequence
of integers (xi) such that

lim
i→∞

xi =
1

n
.

Now since the function x 7→
(
x
k

)
is a polynomial which is continuous, we have(

1/n

k

)
=

(
limi→∞ xi

k

)
= lim

i→∞

(
xi

k

)
.

Since each xi is an integer,
(
xi

k

)
is an integer, and |

(
xi

k

)
|p ≤ 1. By continuity of

the absolute value, we get∣∣∣a
b

∣∣∣
p
=

∣∣∣∣(1/nk
)∣∣∣∣

p

=

∣∣∣∣ limi→∞

(
xi

k

)∣∣∣∣
p

= lim
i→∞

∣∣∣∣(xi

k

)∣∣∣∣
p

≤ 1.

If p | b, then since a
b is in reduced form, we must have p ∤ a, and therefore

|ab |p > 1, a contradiction. This shows p ∤ b.
Now let p1, p2, . . . , pl be the prime divisors of n, the above argument shows that(
1/n
k

)
can be written as (

1/n

k

)
=

a

pe11 pe22 . . . pell
,

where a ∈ Z, e1, . . . , el ∈ Z≥0.
Suitably multiplying some p1, p2, . . . , pl on the numerator and denominator, we
get (

1/n

k

)
=

a′

ne
,

for some a′ ∈ Z and e ∈ Z≥0. This completes the proof.
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